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Abstract—The one-pot combination of amine and heterocyclic carbene catalysis (AHCC) enabled the synthesis of b-hydroxy, b-mal-
onate and b-amino esters from a,b-unsaturated aldehydes with high enantioselectivity (91–97% ee).
� 2007 Elsevier Ltd. All rights reserved.
Organocatalysis is a rapidly growing research field.1 In
particular, amine catalysis that relies on a catalytic cycle,
which involves enamine and iminium intermediates has
proven to be a powerful method for asymmetric reac-
tions with carbonyl compounds.2 For example, it has
been successfully employed in the enantioselective syn-
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theses of formyl functionalized epoxides,3 cyclopro-
panes4 and aziridines5 using a,b-unsaturated aldehydes
as acceptors. Another important method for the activa-
tion of unmodified carbonyl compounds is heterocyclic
carbene catalysis.6 This type of catalysis depends on
the activation of aldehydes by forming hydroxy-enam-
ine-type Breslow intermediates7 with the heterocyclic
carbene. In this context, Bode has recently shown that
2-epoxy and 2-cyclopropyl aldehydes can be converted
into the corresponding acyclic esters under mild condi-
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tions.8,9 Inspired by this research and our previous expe-
rience in amino catalysis,10 we became interested in
whether amine and heterocyclic carbene catalysis
(AHCC) could be combined in one-pot for the biomi-
metic assembly of useful chiral molecules such as b-func-
tionalized esters (Eq. 1, Scheme 1).
Thus, iminium activation of enals 1 followed by enantio-
selective conjugate addition of nucleophiles 2, 3 and
4 followed by intramolecular 3-exo-tet cyclization by
the in situ generated chiral enamine would furnish the
corresponding 2-epoxy, 2-cyclopropyl and 2-aziridine
aldehydes 5, 6 and 7, respectively (Scheme 1). Next,
the base generated heterocyclic carbene catalysts would
catalyze the C–O, C–C or C–N bond-cleavage ring
opening followed by concomitant oxidation of the alde-
hyde and subsequent esterification. If successful, the
one-pot AHCC process would be a highly enantioselec-
tive entry to b-functionalized esters 8–10. Herein, we
present the first novel one-pot combination of asymmet-
ric AHCC that transforms widely available enals into
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Scheme 1. One-pot combination of enantioselective AHCC catalysis.
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b-functionalized esters, including acetate aldol adducts,
in good to high yields and 91–97% ee under practical
conditions.

After extensive screening of the one-pot asymmetric
conversion of cinnamic aldehyde 1a to b-hydroxy ester
8a by AHCC, we found that the use of TMS protected
diphenylprolinol 1111 and thiazolium precatalyst 128 in
CHCl3 gave the best results with respect to the ee of
8a (Eq. 2).
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The optimized conditions involved addition of enal 1a
(0.5 mmol) and H2O2 (0.6 mmol) to a reaction mixture
of 11 (10 mol %) in CHCl3 (2 mL) and EtOH (1.5 mmol)
at �20 �C. After 16 h the reaction was allowed to reach
room temperature and 12 (40 mol %) and DIPEA
(80 mol %) were added. Next, the reaction mixture
was vigorously stirred for 15 h at 30 �C. Following
work-up, b-hydroxy ester 8a was isolated in 66%
yield with 95% ee. Encouraged by this result we investi-
gated this AHCC procedure for different enals 1 (Table
1).

We found that the reaction was general for a variety
of enals 1 and alcohols. Thus EtOH and BnOH
reacted with the in situ generated 2-epoxyaldehyde 5f
to form the corresponding b-hydroxy esters 8f and 8g,
respectively, in good yields and high ee’s (entries 5
and 6). In all the cases investigated, b-hydroxy esters 8
were isolated in good to high yields with 91–95% ee.
Thus, this chemistry offers a valuable, highly enantio-
selective direct catalytic approach to b-hydroxy esters.12

Notably, this class of compounds cannot be prepared by
the otherwise successful amine-catalyzed direct asym-
metric aldol methodology.13 Moreover, 8a can be read-
ily transformed in high overall yield to S-Fluxoteine
(Prozac�).14

We next embarked on the utilization of asymmetric
AHCC for the conversion of enals 1 to b-malonate
esters 9. (Table 2).

After extensive screening, we found that enals 1
(0.3 mmol) were efficiently converted to the correspond-
ing b-malonate esters 9 by reaction with 2-bromomalo-
nate 3 (0.25 mmol) in the presence of catalyst 11
(20 mol %), precatalyst 12 (20 mol %) and DIPEA
(40 mol %) in CHCl3 (1 mL) and alcohol (0.75 mmol)
solutions. TEA (0.25 mmol) was added as a proton
sponge. Following work-up, esters 9 were isolated in
good to high yields with excellent ee’s (95–97% ee).
For example, b-malonate ester 9d was isolated in 68%
overall yield with 96% ee (entry 4). Thus, the one-pot
asymmetric AHCC was a practical method for the
highly enantioselective synthesis of valuable b-malonate
esters.15

The one-pot asymmetric AHCC was not only limited
to the conversion of enals to b-hydroxy esters and
b-malonate esters but also, for example, to the conver-
sion of 2-heptenal 1g to the corresponding b-amino acid



Table 2. Catalytic tandem asymmetric cyclopropanation/esterification of enals
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Entry R R1 Product Yielda (%) eeb (%)

1 Ph Et 9a 69 97
2 Ph Me 9b 56 (74)c 97 (94)c

3 4-NO2C6H4 Me 9c 66d 95
4 2-Naphth Me 9d 68e 96

a Isolated yield of the pure product 9 after silica gel chromatography.
b Determined by chiral-phase HPLC analyses.
c 30 mol % 12.
d Reaction first run for 1.5 h at rt followed by addition of 12.
e Reaction first run for 6 h at 4 �C followed by addition of 12.

Table 1. One-pot catalytic tandem asymmetric epoxidation/esterification of various enals
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Entry R R1 Product Yielda (%) eeb (%)

1 Ph Et 8a 66 95
2 4-ClC6H4 Et 8b 67 95
3 n-Bu Et 8c 82c 91c

4 n-Pr Et 8d 62 93
5 Me Et 8e 59 93
6 CO2Et Et 8f 71c 94c

7 CO2Et Bn 8g 66d 91d

a Isolated yield of the pure product compound 8.
b Determined by chiral-phase HPLC or GC analyses.
c Catalyst 12 and DIPEA were added after 6 h of reaction at 4 �C.
d BnOH was added together with 12.
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ester 10 by reaction with N-Cbz protected amine 4
followed by subsequent esterification (Schemes 1 and 2).

Modification of the in situ catalytic esterification step by
decreasing the temperature to �20 �C improved the ee
of 10 to 83% but decreased the yield to 20%. Neverthe-
less, this result points to a broader scope for a one-pot
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Scheme 2. One-pot catalytic tandem asymmetric aziridination/esterification
combination of AHCC and offers a direct approach to
b-amino acids.

Comparison with the literature revealed that the abso-
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CHCl3)16), respectively. Thus, the stereochemistry of the
AHCC reactions is directed by catalyst 11 as depicted in
Scheme 1. This is in accordance with previous reactions
catalyzed by chiral amine 11.5

In summary, we report that asymmetric AHCC can be
employed for the direct catalytic conversion of a,b-
unsaturated aldehydes to valuable b-functionalized
esters in good to high yields with up to 97% ee. The
one-pot combination or linkage of amine and hetero-
cyclic carbene catalysis opens up the possible biomimetic
asymmetric assembly of highly functionalized optically
active molecules from simple starting materials under
mild conditions. Further expansion of AHCC to other
reactions involving unmodified aldehydes and enals are
ongoing in our laboratory.
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